3.1.28 \(\int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx\) [28]

3.1.28.1 Optimal result
3.1.28.2 Mathematica [A] (verified)
3.1.28.3 Rubi [A] (verified)
3.1.28.4 Maple [A] (verified)
3.1.28.5 Fricas [F]
3.1.28.6 Sympy [F]
3.1.28.7 Maxima [F]
3.1.28.8 Giac [F]
3.1.28.9 Mupad [F(-1)]

3.1.28.1 Optimal result

Integrand size = 25, antiderivative size = 172 \[ \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx=-\frac {4 b \sqrt {1-c^2 x^2}}{3 c^5 d}+\frac {b \left (1-c^2 x^2\right )^{3/2}}{9 c^5 d}-\frac {x (a+b \arcsin (c x))}{c^4 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}-\frac {2 i (a+b \arcsin (c x)) \arctan \left (e^{i \arcsin (c x)}\right )}{c^5 d}+\frac {i b \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )}{c^5 d}-\frac {i b \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{c^5 d} \]

output
1/9*b*(-c^2*x^2+1)^(3/2)/c^5/d-x*(a+b*arcsin(c*x))/c^4/d-1/3*x^3*(a+b*arcs 
in(c*x))/c^2/d-2*I*(a+b*arcsin(c*x))*arctan(I*c*x+(-c^2*x^2+1)^(1/2))/c^5/ 
d+I*b*polylog(2,-I*(I*c*x+(-c^2*x^2+1)^(1/2)))/c^5/d-I*b*polylog(2,I*(I*c* 
x+(-c^2*x^2+1)^(1/2)))/c^5/d-4/3*b*(-c^2*x^2+1)^(1/2)/c^5/d
 
3.1.28.2 Mathematica [A] (verified)

Time = 0.91 (sec) , antiderivative size = 286, normalized size of antiderivative = 1.66 \[ \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx=-\frac {18 a c x+6 a c^3 x^3+22 b \sqrt {1-c^2 x^2}+2 b c^2 x^2 \sqrt {1-c^2 x^2}+9 i b \pi \arcsin (c x)+18 b c x \arcsin (c x)+6 b c^3 x^3 \arcsin (c x)-9 b \pi \log \left (1-i e^{i \arcsin (c x)}\right )-18 b \arcsin (c x) \log \left (1-i e^{i \arcsin (c x)}\right )-9 b \pi \log \left (1+i e^{i \arcsin (c x)}\right )+18 b \arcsin (c x) \log \left (1+i e^{i \arcsin (c x)}\right )+9 a \log (1-c x)-9 a \log (1+c x)+9 b \pi \log \left (-\cos \left (\frac {1}{4} (\pi +2 \arcsin (c x))\right )\right )+9 b \pi \log \left (\sin \left (\frac {1}{4} (\pi +2 \arcsin (c x))\right )\right )-18 i b \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )+18 i b \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{18 c^5 d} \]

input
Integrate[(x^4*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2),x]
 
output
-1/18*(18*a*c*x + 6*a*c^3*x^3 + 22*b*Sqrt[1 - c^2*x^2] + 2*b*c^2*x^2*Sqrt[ 
1 - c^2*x^2] + (9*I)*b*Pi*ArcSin[c*x] + 18*b*c*x*ArcSin[c*x] + 6*b*c^3*x^3 
*ArcSin[c*x] - 9*b*Pi*Log[1 - I*E^(I*ArcSin[c*x])] - 18*b*ArcSin[c*x]*Log[ 
1 - I*E^(I*ArcSin[c*x])] - 9*b*Pi*Log[1 + I*E^(I*ArcSin[c*x])] + 18*b*ArcS 
in[c*x]*Log[1 + I*E^(I*ArcSin[c*x])] + 9*a*Log[1 - c*x] - 9*a*Log[1 + c*x] 
 + 9*b*Pi*Log[-Cos[(Pi + 2*ArcSin[c*x])/4]] + 9*b*Pi*Log[Sin[(Pi + 2*ArcSi 
n[c*x])/4]] - (18*I)*b*PolyLog[2, (-I)*E^(I*ArcSin[c*x])] + (18*I)*b*PolyL 
og[2, I*E^(I*ArcSin[c*x])])/(c^5*d)
 
3.1.28.3 Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.08, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {5210, 27, 243, 53, 2009, 5210, 241, 5164, 3042, 4669, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {\int \frac {x^2 (a+b \arcsin (c x))}{d \left (1-c^2 x^2\right )}dx}{c^2}+\frac {b \int \frac {x^3}{\sqrt {1-c^2 x^2}}dx}{3 c d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {x^2 (a+b \arcsin (c x))}{1-c^2 x^2}dx}{c^2 d}+\frac {b \int \frac {x^3}{\sqrt {1-c^2 x^2}}dx}{3 c d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}\)

\(\Big \downarrow \) 243

\(\displaystyle \frac {\int \frac {x^2 (a+b \arcsin (c x))}{1-c^2 x^2}dx}{c^2 d}+\frac {b \int \frac {x^2}{\sqrt {1-c^2 x^2}}dx^2}{6 c d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}\)

\(\Big \downarrow \) 53

\(\displaystyle \frac {\int \frac {x^2 (a+b \arcsin (c x))}{1-c^2 x^2}dx}{c^2 d}+\frac {b \int \left (\frac {1}{c^2 \sqrt {1-c^2 x^2}}-\frac {\sqrt {1-c^2 x^2}}{c^2}\right )dx^2}{6 c d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\int \frac {x^2 (a+b \arcsin (c x))}{1-c^2 x^2}dx}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {\frac {\int \frac {a+b \arcsin (c x)}{1-c^2 x^2}dx}{c^2}+\frac {b \int \frac {x}{\sqrt {1-c^2 x^2}}dx}{c}-\frac {x (a+b \arcsin (c x))}{c^2}}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

\(\Big \downarrow \) 241

\(\displaystyle \frac {\frac {\int \frac {a+b \arcsin (c x)}{1-c^2 x^2}dx}{c^2}-\frac {x (a+b \arcsin (c x))}{c^2}-\frac {b \sqrt {1-c^2 x^2}}{c^3}}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

\(\Big \downarrow \) 5164

\(\displaystyle \frac {\frac {\int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}}d\arcsin (c x)}{c^3}-\frac {x (a+b \arcsin (c x))}{c^2}-\frac {b \sqrt {1-c^2 x^2}}{c^3}}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int (a+b \arcsin (c x)) \csc \left (\arcsin (c x)+\frac {\pi }{2}\right )d\arcsin (c x)}{c^3}-\frac {x (a+b \arcsin (c x))}{c^2}-\frac {b \sqrt {1-c^2 x^2}}{c^3}}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

\(\Big \downarrow \) 4669

\(\displaystyle \frac {\frac {-b \int \log \left (1-i e^{i \arcsin (c x)}\right )d\arcsin (c x)+b \int \log \left (1+i e^{i \arcsin (c x)}\right )d\arcsin (c x)-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))}{c^3}-\frac {x (a+b \arcsin (c x))}{c^2}-\frac {b \sqrt {1-c^2 x^2}}{c^3}}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {\frac {i b \int e^{-i \arcsin (c x)} \log \left (1-i e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-i b \int e^{-i \arcsin (c x)} \log \left (1+i e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))}{c^3}-\frac {x (a+b \arcsin (c x))}{c^2}-\frac {b \sqrt {1-c^2 x^2}}{c^3}}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {\frac {-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))+i b \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )-i b \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{c^3}-\frac {x (a+b \arcsin (c x))}{c^2}-\frac {b \sqrt {1-c^2 x^2}}{c^3}}{c^2 d}-\frac {x^3 (a+b \arcsin (c x))}{3 c^2 d}+\frac {b \left (\frac {2 \left (1-c^2 x^2\right )^{3/2}}{3 c^4}-\frac {2 \sqrt {1-c^2 x^2}}{c^4}\right )}{6 c d}\)

input
Int[(x^4*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2),x]
 
output
(b*((-2*Sqrt[1 - c^2*x^2])/c^4 + (2*(1 - c^2*x^2)^(3/2))/(3*c^4)))/(6*c*d) 
 - (x^3*(a + b*ArcSin[c*x]))/(3*c^2*d) + (-((b*Sqrt[1 - c^2*x^2])/c^3) - ( 
x*(a + b*ArcSin[c*x]))/c^2 + ((-2*I)*(a + b*ArcSin[c*x])*ArcTan[E^(I*ArcSi 
n[c*x])] + I*b*PolyLog[2, (-I)*E^(I*ArcSin[c*x])] - I*b*PolyLog[2, I*E^(I* 
ArcSin[c*x])])/c^3)/(c^2*d)
 

3.1.28.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 53
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int 
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, 
x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4, 0]) 
|| LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
 

rule 241
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^(p + 1)/ 
(2*b*(p + 1)), x] /; FreeQ[{a, b, p}, x] && NeQ[p, -1]
 

rule 243
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2   Subst[In 
t[x^((m - 1)/2)*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, m, p}, x] && I 
ntegerQ[(m - 1)/2]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4669
Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*k*Pi)*E^(I*(e + f*x))]/f), x] + (-Si 
mp[d*(m/f)   Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))], x], 
 x] + Simp[d*(m/f)   Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x 
))], x], x]) /; FreeQ[{c, d, e, f}, x] && IntegerQ[2*k] && IGtQ[m, 0]
 

rule 5164
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbo 
l] :> Simp[1/(c*d)   Subst[Int[(a + b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] 
/; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 

rule 5210
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 
3.1.28.4 Maple [A] (verified)

Time = 0.21 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.33

method result size
derivativedivides \(\frac {-\frac {a \left (\frac {c^{3} x^{3}}{3}+c x +\frac {\ln \left (c x -1\right )}{2}-\frac {\ln \left (c x +1\right )}{2}\right )}{d}-\frac {5 b \sqrt {-c^{2} x^{2}+1}}{4 d}-\frac {5 b \arcsin \left (c x \right ) c x}{4 d}-\frac {b \arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}+\frac {b \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}+\frac {i b \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}-\frac {i b \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}+\frac {b \cos \left (3 \arcsin \left (c x \right )\right )}{36 d}+\frac {b \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{12 d}}{c^{5}}\) \(229\)
default \(\frac {-\frac {a \left (\frac {c^{3} x^{3}}{3}+c x +\frac {\ln \left (c x -1\right )}{2}-\frac {\ln \left (c x +1\right )}{2}\right )}{d}-\frac {5 b \sqrt {-c^{2} x^{2}+1}}{4 d}-\frac {5 b \arcsin \left (c x \right ) c x}{4 d}-\frac {b \arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}+\frac {b \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}+\frac {i b \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}-\frac {i b \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d}+\frac {b \cos \left (3 \arcsin \left (c x \right )\right )}{36 d}+\frac {b \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{12 d}}{c^{5}}\) \(229\)
parts \(-\frac {a \left (\frac {\frac {1}{3} c^{2} x^{3}+x}{c^{4}}+\frac {\ln \left (c x -1\right )}{2 c^{5}}-\frac {\ln \left (c x +1\right )}{2 c^{5}}\right )}{d}-\frac {5 b \sqrt {-c^{2} x^{2}+1}}{4 c^{5} d}-\frac {5 b \arcsin \left (c x \right ) x}{4 d \,c^{4}}-\frac {b \arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d \,c^{5}}+\frac {b \arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d \,c^{5}}+\frac {i b \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d \,c^{5}}-\frac {i b \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )}{d \,c^{5}}+\frac {b \cos \left (3 \arcsin \left (c x \right )\right )}{36 d \,c^{5}}+\frac {b \arcsin \left (c x \right ) \sin \left (3 \arcsin \left (c x \right )\right )}{12 d \,c^{5}}\) \(257\)

input
int(x^4*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x,method=_RETURNVERBOSE)
 
output
1/c^5*(-a/d*(1/3*c^3*x^3+c*x+1/2*ln(c*x-1)-1/2*ln(c*x+1))-5/4*b/d*(-c^2*x^ 
2+1)^(1/2)-5/4*b/d*arcsin(c*x)*c*x-b/d*arcsin(c*x)*ln(1+I*(I*c*x+(-c^2*x^2 
+1)^(1/2)))+b/d*arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+1)^(1/2)))+I*b/d*dilog 
(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))-I*b/d*dilog(1-I*(I*c*x+(-c^2*x^2+1)^(1/2) 
))+1/36*b/d*cos(3*arcsin(c*x))+1/12*b/d*arcsin(c*x)*sin(3*arcsin(c*x)))
 
3.1.28.5 Fricas [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx=\int { -\frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{4}}{c^{2} d x^{2} - d} \,d x } \]

input
integrate(x^4*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x, algorithm="fricas")
 
output
integral(-(b*x^4*arcsin(c*x) + a*x^4)/(c^2*d*x^2 - d), x)
 
3.1.28.6 Sympy [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx=- \frac {\int \frac {a x^{4}}{c^{2} x^{2} - 1}\, dx + \int \frac {b x^{4} \operatorname {asin}{\left (c x \right )}}{c^{2} x^{2} - 1}\, dx}{d} \]

input
integrate(x**4*(a+b*asin(c*x))/(-c**2*d*x**2+d),x)
 
output
-(Integral(a*x**4/(c**2*x**2 - 1), x) + Integral(b*x**4*asin(c*x)/(c**2*x* 
*2 - 1), x))/d
 
3.1.28.7 Maxima [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx=\int { -\frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{4}}{c^{2} d x^{2} - d} \,d x } \]

input
integrate(x^4*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x, algorithm="maxima")
 
output
-1/6*a*(2*(c^2*x^3 + 3*x)/(c^4*d) - 3*log(c*x + 1)/(c^5*d) + 3*log(c*x - 1 
)/(c^5*d)) + 1/6*(6*c^5*d*integrate(-1/6*(2*c^3*x^3 + 6*c*x - 3*log(c*x + 
1) + 3*log(-c*x + 1))*sqrt(c*x + 1)*sqrt(-c*x + 1)/(c^6*d*x^2 - c^4*d), x) 
 - 2*(c^3*x^3 + 3*c*x)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)) + 3*arct 
an2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))*log(c*x + 1) - 3*arctan2(c*x, sqrt( 
c*x + 1)*sqrt(-c*x + 1))*log(-c*x + 1))*b/(c^5*d)
 
3.1.28.8 Giac [F]

\[ \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx=\int { -\frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{4}}{c^{2} d x^{2} - d} \,d x } \]

input
integrate(x^4*(a+b*arcsin(c*x))/(-c^2*d*x^2+d),x, algorithm="giac")
 
output
integrate(-(b*arcsin(c*x) + a)*x^4/(c^2*d*x^2 - d), x)
 
3.1.28.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^4 (a+b \arcsin (c x))}{d-c^2 d x^2} \, dx=\int \frac {x^4\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{d-c^2\,d\,x^2} \,d x \]

input
int((x^4*(a + b*asin(c*x)))/(d - c^2*d*x^2),x)
 
output
int((x^4*(a + b*asin(c*x)))/(d - c^2*d*x^2), x)